Notiz / **Note**

Gas-Phase Generation and Characterization of Hydrogen Cyanide N-Methylide

Norman Goldberg, Muhammad Iraqi, and Helmut Schwarz"

Institut für Organische Chemie der Technischen Universität Berlin, StraDe des 17. Juni 135, D-10623 Berlin, **F.** R. G.

Received July 23, 1993

Key Words: Ylides / Distonic ions / Neutralization-reionization mass spectrometry

The recently described (Maier et al.^[2]) title compound is not only viable in an argon matrix (10 K) but is also accessible in the gas phase. Electron impact ionization of $(CH_3)_3CCX_2NC$

The increasing importance and conspicuous properties **of** distonic ions^{$[3]$} - species in which the charge and radical centres are formally separated - **as** central intermediates in areas as diverse as chemistry in the gas phase or in frozen matrices are well documented in several review articles^[4]. An interesting sub-class are the a-distonic cations which formally correspond to the ionized forms of ylides f51. **A** typical example which highlights some of the unusual features of these molecules is $H_2\dot{C}-\dot{O}H_2$ (1). This radical cation has indeed remarkable properties in comparison with its conventional isomer, the methanol molecular ion CH₃OH⁺ (2) (Scheme 1). In contrast to the *neutral* counterparts *5* and **6,** ylide ion **1** is both thermochemically and kinetically more stable than **216].** In charge stripping (CS) experiments^[7], **1** can be oxidized in the gas phase to its corresponding dication $H_2C-OH_2^{2+}$ (3), while CH₃OH⁺ upon gas-phase oxidation does not give rise to a detectable dication CH₃OH²⁺ (4)^[8]. Similarly, if CH₂OH₂⁺ (1) is subjected to a neutralization-reionization $(NR)^{[9]}$ experiment, in line with the theoretical $+$ predictions^[6d], no recovery signal for the *neutral* ylide H_2C-OH_2 (5) is observed^[10] in contrast to CH₃OH⁺ which, of course, can be neutralized to methanol. The failure to neutralize $H_2C-OH_2^+$ is twofold: (i) The carbon-oxygen binding energy of the neutral ylide **5** is quite small (< 10 kcal/mol) and (ii) the large difference in equilibrium geometries of the charged and neutral species implies that vertically neutralized ylides will be formed with considerable excess

Scheme 1

 $(X = H, D)$ gives rise to $HCNCX₂⁺$, which can be successfully neutralized in a beam experiment.

energy, thus facilitating rearrangement and/or fragmentation processes.

Here we report our results on the gas-phase generation and characterization of another important ylide, i.e. hydrogen cyanide *N*methylide HCNCH₂ (8) and its radical cation 7. The neutral species

Figure 1. Collisonal activation mass spectra (helium, 80% T) of (a) $HCNCH₂⁺$, (b) $HCNCD₂⁺$

Chem. Ber. **1993,** *126,* 2353 -2355 *0* VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1993 O009-2940/93/1010-2353 \$ 10.00+ .25/0

8 is one of the members of the intriguing C_2H_3N family^[11], and in a recent exhaustive study^[2] its preparation in an argon matrix (10 K), spectroscopic indentification, and its relationship with other $C₂H₃N$ isomers has been described.

Scheme 2

In the context of our earlier work on the identification of the potentially interstellar C_2H_3N isomer aminoacetylene^[12], we also reported on the collisional activation $(CA)^{\{13\}}$ mass spectra of several $C_2H_3N^+$ isomers, including also HCNCH₂⁺ (7). This species is easily accessible by electron-impact-induced fragmentation of aliphatic isonitriles (Scheme 2), and a typical CA mass spectrum for this ion, generated from 2,2-dimethylpropyl isocyanide, is given in Figure la. In Figure Ib, the CA mass spectrum of the isotopomer $HCNCD₂⁺$ is reproduced^[14].

The interpretation of Figure 1 is straightforward in that $-$ in addition to the structure-unspecific losses of H_x ($x = 1-3$) - we observe three diagnostic features one would indeed expect for an $HCNCX_2^+$ (X = H, D) connectivity: Formations of CX_2^+ , NCX₂⁺, and of the doubly charged ion $HCNCX₂²⁺$. This signature is not only different from that of the other $C_2H_3N^+$ isomers, described

Figure 2. Neutralization-reionization mass spectra (xenon, 80% T/ oxygen 80% T) of (a) $HCNCH₂⁺$, (b) $HCNCD₂⁺$

earlier^[12], it is also in keeping with the connectivity of ionized hydrogen cyanide N-methylide 7.

Can 7 also be successfully neutralized? As evidenced by the spectra shown in Figure 2, the structure-indicative fragments are indeed retained, when $HCNCX_i⁺$ ions are subjected to a neutralizationreionization experiment. In addition, we observe a very intense survivor signal. These two observations clearly demonstrate that - in line with the theoretical expectations^[2] - the neutral $HCNCX₂$ (X = H, D) is a stable molecule also in the gas phase. The relatively high abundances of the $HCNCX_2$ signals in the NR specrelatively high abundances of the HCNCX₂ signals in the NR spectra are no surprise if one takes into account, that $-$ in contrast to H_2O-OH_2 – no low-energy dissociation paths are available for hydrogen cyanide N-methylide (8). In particular, Maier's calculations^[2] indicate that the two carbon-nitrogen bonds of 8 are of nearly equal bond length, thus favouring the ylide form **8a** in comparison to the N-methylide form **8b,** which would be expected to fall apart more easily to HCN and $CH₂$.

$$
HC = N = CH2 \t HCN - CH2
$$

8a 8b

The generous financial support of our work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is appreciated. H. S. is grateful to the *Alexander uon Humboldt Foundation* for a Max Planck Research Award which provides the financial background for the collaboration with his Israeli partner, Professor *C. Lifshitz,* from the Hebrew University of Jerusalem. We thank Professor G. *Maier* for providing us with a preprint of his recent work on C_2H_3N isomers in argon matrices.

- **[21** G. Maier, C. Schmid, H. P. Reisenauer, E. Endlein, D. Becker, J. Eckwert, B. A. Hess, Jr., L. J. Schaad, *Chem. Ber.* 1993, 126, $2337 - 2352$; preceding paper.
^[3] For a definition, see: L. Radom, W. J. Bouma, R. H. Nobes, B.
- F. Yates, *Pure Appl. Chem.* 1984, 56, 1831.
- **14] L4a1** H. Schwarz, *Nachr. Chem. Tech. Lab.* 1983,31,451. **14b1** H. Schwarz, *Shitsuryo Burseki* 1984, 32, 3. - *Ikl* M. A. Baldwin, *Schwarz, Shitsuryo Burseki* 1984, 32, 3. - ^[4c] M. A. Baldwin, *Specialist Periodical Report, Mass Spectrom.* 1986, 8, 34. - ^[4e] S. Hammerum, *Mass Spectrom. Rev.* 1988, 7, 123. - ^[4e] G. Bouch-Hammerum, *Mass Spectrom. Rev.* **1988**, 7, 123. - ^[4e] G. Bouch-
oux, *Mass Spectrom. Rev.* **1988**, 7, 1, 203. - ^[40] K. M. Stirk, L. K. M. Kiminkinen, M. I. Kenttamaa, *Chem. Rev.* 1992,92,1649.
-
- ^[5] D. G. Morris, Surv. Prog. Chem. 1983, 10, 189.

^{[6] [6a]} W. J. Bouma, R. H. Nobes, L. Radom, *J. Am. Chem. Soc.*
 1982, 104, 2929. ^[6b] W. J. Bouma, J. K. MacLeod, L. Radom, *J. Am. Chem. Soc.* **1982**, 104, 1. *Am.* Chem. 350, 1982, 104, 2550.
Lossing, J. K. Terlouw, P. C. Burgers, J. *Am. Chem. Soc.* 1982, 104, 2931. – ^[6d] B. F. Yates, W. J. Bouma, L. Radom, J. *Am. Chem. SOC.* 1987, f09, 2250. '
- ^[7] W. Koch, F. Maquin, D. Stahl, H. Schwarz, *Chimia* 1985, 39, 376.
- [*I F. Maquin, D. Stahl, A. Sawaryn, P. v. R. Schleyer, W. Koch, G. Frenking, H. Schwarz, J. *Chem. SOC., Chem. Commun.* 1984,
- 504.
^[9] Reviews: ^[9a] J. K. Terlouw, P. C. Burgers, B. L. M. van Baar, T. Weiske, H. Schwarz, *Chimia* **1986**, 40, 357. ^{[9b}] C. Wesde-T. Weiske, H. Schwarz, *Chimia* 1986, 40, 357. - ^{*9bl*} C. Wesde-
miotis, F. W. McLafferty, *Chem. Rev.* 1987, 87, 485. - ^{*9bl*} J. K. Terlouw, H. Schwarz, *Angew. Chem.* **1987**, 99, 829. *Angew. Chem. Int. Ed. Engl.* **1987**, 26, 805. - ^[9d] H. Schwarz, *Pure Appl. Chem. Int. Ed. Engl.* **1987**, 26, 805. - ^[9d] H. Schwarz, *Pure Appl. Chem.* **1989**, 61, 685. - ^[9e] J. L. Holmes, *Mass Spectrom. Rev.* Chem. 1989, 61, 685. - ^[92] J. L. Holmes, *Mass Spectrom. Rev.* 1989, 8, 513. - ^{[91} J. K. Terlouw, *Adv. Mass Spectrom.* 1989, 11, 1989, 8, 513. - ^{[96} J. K. Terlouw, *Adv. Mass Spectrom.* 1989, 11, 984. - ^{*P81*} F. W. McLafferty, *Science* 1990, 247, 925. - ^{*194*} F. W. McLafferty, Int. J. Mass Spectrom. Ion Processes 1992, *118/f19,* 221.
- ['I C. E. C. A. Hop, J. Bordas-Nagy, J. L. Holmes, J. K. Terlouw, *Mass Spectrom.* **1988**, *23*, **155.** *pp. 1981*, 93, 425; *Angew. html* **1981**, 93, 425; *Angew. Pp. 1981*
- Org. Mass Spectrom. **1988**, 23, 155.
^[11a] H. Bock, B. Solouki, Angew. Chem. **198**1, 93, 425; Angew.
Chem. Int. Ed. Engl. **1981**, 20, 427. ^{[11b}] T.-K. Ha, M. T. Chem. Int. Ed. Engl. 1981, 20, 427. - ^[116] T.-K. Ha, M. T.
Nguyen, *J. Mol. Struct. (THEOREM)* **1982**, *87*, 355. - **[116]** H. Bock, R. Dammel, S. Aygen, J. *Am. Chem. SOC.* 1983, *105,* 7681.

[[]'I Dedicated to Professor *Hans Bock,* Frankfurt, on the occasion of his 65th birthday.

- **'Itd1** L. L. Lohr, Jr., M. Hanamana, K. Morokuma, *J. Am. Chem. Soc.* **1983, 105,** 5541. - **['Ie1 S.** Saeb, L. Farnell, N. V. Chem. Soc. 1983, 105, 5541. -- ^[11e] S. Saeb, L. Farnell, N. V. Riggs, L. Radom, *J. Am. Chem. Soc.* 1984, 106, 5047. -- ^{[110}] M. Bogey, J.-L. Destombes, **J.-M.** Denis, J.-C. Guillemin, *J. Mol. Spectrosc.* **1986,** *115,* **1.** - H. Bock, R. Dammel, *Angew.* Chem. 1987, 99, 518; Angew. Chem. Int. Ed. Engl. 1987, 26, 504.
-- ^{[11h}] H. Bock, R. Dammel, *Chem. Ber.* 1987, 120, 1971. --
^[11i] J.-C. Guillemin, J.-M. Denis, M.-C. Lasne, J.-L. Ripoll, *Tetrahedron* **1988,** *44,* 4447.

- [I2] B. v. Baar, W. Koch, C. Lebrilla, **J.** K. Terlouw, T. Weiske, H. Schwarz, *Anyew. Chem.* **1986,** *98,* **834;** *Angew. Chem. Znt. Ed. Engl.* **1986,** *25,* 827.
- **[I3]** Review: **K.** Levsen, H. Schwarz, *Angew. Chem.* **1976,** *88,* 589; *Angew. Chem. Int. Ed. Engl.* **1976,** *15,* 509.
- ^[14] The mass-spectrometric experiments were performed using our modified ZAB-HF machine which is of *BEBE* configuration (*B* stands for magnetic and *E* for electric sector) (ref.^[15]). $C_2H_3N^+$ and $C_2HD_2N^+$ ions were generated by 70-eV ionization of $(CH_3)_3\overline{CCH_2}NC$ and $(CH_3)_3\overline{CCD}_2NC$, respectively, employing the following ion-source conditions: ion-source temperature 200°C; trap current 100 μA; repeller voltage 30 V; acceleration voltage 8 kV; mass resolution $m/\Delta m = 3000$. In the NRMS

experiment, a beam of $B(1)E(1)$ mass-selected $C_2H_3N^+$, having 8 keV translational energy, was neutralized in the first cell of a differentially pumped tandem collision cell by colliding it with xenon (80% transmission, T). Unreacted ions were deflected away from the beam of neutral species by putting a voltage on a deflector electrode which is situated between the two collision cells. Subsequent reionization of the beam of neutral C_2H_3N is brought about in a second collision cell by collision with oxygen (80% T). The mass spectra of the resulting ions were recorded by scanning B(2). The *minimal* lifetime *t* (identical with the transit time from collision cell I to cell **11)** in the present experiments is $> 10 \mu s$. In the CA experiments, helium was used as a collision partner **(80% T).** In order to improve the **S/N** ratio, signal averaging techniques were used by accumulating *25* - 50 scans and on-line processing the data with the AMD-Intectra data system.

[''I [lSa1 R. Srinivas, D. Siilzle, W. Koch, C. H. DePuy, **H.** Schwarz, *J. Am. Chem. Soc.* **1991,** *113,* 5970. - **[lSb1** R. Srinivas, D. K. **Bohme, D. Sülzle, H. Schwarz,** *J. Phys. Chem.* **1991**, *95*, 9836. - ^[15c], **R. Siilzle, T. Weiske, H. Schwarz,** *Int. J. Mass* $\sum_{n=1}^{\infty}$ **R. Srinivas, D. Sülzle, T. Weiske, H. Schwarz,** *Int. J. Mass Spectrom. Zon Processes* **1991,** *107,* 369.

[239/93]